Линейная оптимизация
Задача 1
Фирма производит два продукта А и В, рынок сбыта которых неограничен. Каждый продукт должен быть обработан каждой машиной I, II, III. Время обработки в часах для каждого из изделий А и В приведено ниже.
| Продукт | Время обработки, ч | Прибыль, долл. | ||
| I | II | III | ||
| A | 0,5 | 0,4 | 0,2 | 5 |
| B | 0,25 | 0,3 | 0,4 | 3 |
Время работы машин I, II, III соответственно 40, 36 и 36 часов в неделю. Прибыль от изделий А и В составляет соответственно 5 и 3 доллара. Фирме надо определить недельные нормы выпуска изделий А и В, максимизирующие прибыль.
Ответ. А — 60, В — 40. 420 долл. в неделю.
Задача 2
Фирма занимается составлением диеты, содержащей по крайней мере 20 единиц белков, 30 единиц углеводов, 10 единиц жиров и 40 единиц витаминов. Как дешевле всего достичь этого при указанных ценах на продукты?
| Хлеб | Соя | Рыба | Фрукты | Молоко | Диета | |
| Белки | 2 | 12 | 10 | 1 | 2 | 20 |
| Углеводы | 12 | 0 | 0 | 4 | 3 | 30 |
| Жиры | 1 | 8 | 3 | 0 | 4 | 10 |
| Витамины | 2 | 2 | 4 | 6 | 2 | 40 |
| Цена | 12 | 36 | 32 | 18 | 10 |
Ответ. 5/6 кг рыбы, 5 кг фруктов, 3 1/3 л молока. Цена 150 руб.